An Infinite-Dimensional Hamiltonian System on Projective Hilbert Space
نویسندگان
چکیده
منابع مشابه
Differential Forms on Wasserstein Space and Infinite-dimensional Hamiltonian Systems
Let M denote the space of probability measures on R endowed with the Wasserstein metric. A differential calculus for a certain class of absolutely continuous curves in M was introduced in [4]. In this paper we develop a calculus for the corresponding class of differential forms on M. In particular we prove an analogue of Green’s theorem for 1-forms and show that the corresponding first cohomolo...
متن کاملProjective Hilbert space structures
A non-Hermitian complex symmetric 2 × 2-matrix toy model is used to study projective Hilbert space structures in the vicinity of exceptional points (EPs). The bi-orthogonal eigenvectors of a diagonalizable matrix are Puiseuxexpanded in terms of the root vectors at the EP. It is shown that the apparent contradiction between the two incompatible normalization conditions with finite and singular b...
متن کاملKähler–Einstein submanifolds of the infinite dimensional projective space
This paper consists of two main results. In the first one we describe all Kähler immersions of a bounded symmetric domain into the infinite dimensional complex projective space in terms of the Wallach set of the domain. In the second one we exhibit an example of complete and nonhomogeneous Kähler-Einstein metric with negative scalar curvature which admits a Kähler immersion into the infinite di...
متن کاملInfinite Dimensional Hamiltonian Systems
where H is the Hamiltonian (”energy”) and {. , .} is a Poisson bracket on an infinite dimensional phase space, called Poisson manifold. Unlike finite dimensional Hamiltonian systems, which are ordinary differential evolution equations on finite dimensional phase spaces, for which general existence and uniqueness theorems for solutions exist, this is not the case for PDEs. There are no general e...
متن کاملInfinite-Dimensional Filtering: The Kalman-Bucy Filter in Hilbert Space
We examine the question of determining the "best" linear filter, in an expected squared error sense, for a signal generated by stochastic linear differential equation on a Hilbert space. Our results, which extend the development in Kalman and Bucy (1960), rely heavily on the integration theory for Banach-space-valued functions of Dunford and Schwartz (1958). In order to derive the Kalman-Bucy f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1987
ISSN: 0002-9947
DOI: 10.2307/2000869